PSAT Math Multiple-Choice Practice Question 813
Question: 813
If -16 - 6x + x2 = x2 - abx - 8b, where a and b are constants, what is the value of a?
Correct Answer: C
Explanation:
(C) The different terms on the two sides of the equation equal each other. So -16 = -8b, -6x = -abx , and x2 = x2. Why? This occurs because the constants must equal each other, the terms with an x must equal each other, and the terms with an x2 must equal one another. Since -16 = -8b, b = 2. Plug in 2 for b in the second equation and cancel out the -x to solve for a:
-6x = -abx → 6 = a · 2 → a = 3
More Tests
- PSAT Math Multiple-Choice Test 1
- PSAT Math Multiple-Choice Test 2
- PSAT Math Multiple-Choice Test 3
- PSAT Math Multiple-Choice Test 4
- PSAT Math Multiple-Choice Test 5
- PSAT Math Multiple-Choice Test 6
- PSAT Math Multiple-Choice Test 7
- PSAT Math Multiple-Choice Test 8
- PSAT Math Multiple-Choice Test 9
- PSAT Math Multiple-Choice Test 10
- PSAT Math Multiple-Choice Test 11
- PSAT Math Multiple-Choice Test 12
- PSAT Math Multiple-Choice Test 13
- PSAT Math Multiple-Choice Test 14
- PSAT Math Multiple-Choice Test 15
- PSAT Math Multiple-Choice Test 16
- PSAT Math Multiple-Choice Test 17
- PSAT Math Multiple-Choice Test 18
- PSAT Math Multiple-Choice Test 19
- PSAT Math Multiple-Choice Test 20
- PSAT Math Multiple-Choice Test 21
- PSAT Math Multiple-Choice Test 22
- PSAT Math Multiple-Choice Test 23
- PSAT Math Multiple-Choice Test 24
- PSAT Math Multiple-Choice Test 25