ADVANCED EQUATION CONCEPTS DRILL

Solve for $x: 2 x^{2}-5 x+1=0$
For what value of x is the following function undefined?

$$
y=\frac{14 x-5}{2 x+3}
$$

If x is going to have only imaginary solutions, what are the possible values of c in this equation? (If needed, see "Imaginary Numbers" on page 361.)

$$
x^{2}+2 x+c=0
$$

What is the solution (or solutions) to this equation?

$$
x=\sqrt{12-x}
$$

Solve for x by completing the square: $x^{2}-8 x-20=0$.

Solutions

Use the quadratic equation to solve:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(1)}}{22} \\
& x=\frac{5 \pm \sqrt{25-8}}{4} \\
& x=\frac{5 \pm \sqrt{17}}{4}
\end{aligned}
$$

In order for the function $y=\frac{14 x-5}{2 x+3}$ to be undefined, the denominator, $2 x+3$, should equal zero. Set up an equation to solve:

$$
2 x+3=0 \rightarrow 2 x=-3 \rightarrow x=-\frac{3}{2}
$$

Consider the quadratic equation: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. If x is going to have only imaginary solutions, the discriminant $\left(b^{2}-4 a c\right)$ in the quadratic formula must be negative. Why? If the discriminant was negative, you would be taking the square root of a negative number, which will result in imaginary solutions. For the equation $x^{2}+2 x+c=0$, the value of a is 1 , the value of b is 2 , and c is a variable. Set up an inequality to solve:

$$
\begin{aligned}
b^{2}-4 a c & <0 \\
2^{2}-41 c & <0 \\
4-4 c & <0 \\
4 & <4 c \\
1 & <c
\end{aligned}
$$

As long as c is greater than 1 , there will be an imaginary solution to the equation. Start by squaring both sides of the equation:

$$
\begin{aligned}
x & =\sqrt{12-x} \\
x^{2} & =12-x \\
x^{2}+x-12 & =0
\end{aligned}
$$

Then factor the equation:

$$
\begin{array}{r}
x^{2}+x-12=0 \\
(x+4)(x-3)=0
\end{array}
$$

It looks like -4 and 3 will work as solutions. However, you need to check for extraneous solutions by plugging these possible solutions back into the original equation.
Plug in 3 for x :

$$
\begin{aligned}
& x=\sqrt{12-x} \\
& 3=\sqrt{12-3} \\
& 3=\sqrt{9} \\
& 3=3
\end{aligned}
$$

So 3 works.

Now plug in -4 for x :

$$
\begin{aligned}
-4 & =\sqrt{12-(-4)} \\
-4 & =\sqrt{12-(-4)} \\
-4 & =\sqrt{16} \\
-4 & \neq 4
\end{aligned}
$$

So -4 is extraneous, and the only solution is 3 .
Start by adding 20 to each side of the equation:

$$
\begin{aligned}
x^{2}-8 x-20 & =0 \\
x^{2}-8 x & =20
\end{aligned}
$$

Now take half of -8 , which is -4 , square it, and add it to both sides:

$$
\begin{aligned}
x^{2}-8 x+16 & =20+16 \\
x^{2}-8 x+16 & =36 \\
(x-4)^{2} & =6^{2} \\
\sqrt{(x-4)^{2}} & =\sqrt{6^{2}} \\
x-4 & = \pm 6
\end{aligned}
$$

The two solutions for x can be found as follows:

$$
\begin{aligned}
x-4 & =6 & & \text { and } & & x-4
\end{aligned}=-6
$$

So x can be either 10 or -2 .

© CrackPSAT

PSAT Resource Links

PSAT Online Practice Tests: https://www.crackpsat.net/psat/

* PSAT Reading Practice Tests:
https://www.crackpsat.net/psat/reading/
PSAT Writing and Language Tests:
https://www.crackpsat.net/psat/writing-language/
* PSAT Math Practice Tests:
https://www.crackpsat.net/psat/math/
PSAT Real Past Papers Download:
https://www.crackpsat.net/psat-downloads/

New SAT Practice Tests:
https://www.cracksat.net
ACT Practice Tests:
https://www.crackacc.com
AP Exams Practice Tests:
https://www.crackap.com

Please visit https://www.crackpsat.net for more PSAT exam information and resource.

